Benha University Faculty of Engineering at Shoubra **Civil Engineering Department Third Year Civil, Structures**

Final 2nd Term Exam Date: 8 / 6 / 2016 **Irrigation & Drainage Engineering CVS 325 Duration: 3 hours**

• No. of Questions: 4

• Total Mark: 100 Marks

- Answer all the following questions.
- Illustrate your answers with sketches when necessary.
- The exam consists of 2 pages.

Question (1) (25 Marks)

(A) State True or False & Correct the False

No	The Statement					
1	Hygroscopic water is useful for the plant.					
2	Capillary water is useful for the plant.					
3	Excess water in the soil is the moisture above W.P.					
4	Irrigation efficiency increases by giving less quantities of water with short periods					
	between irrigation processes.					
5	Irrigation rotations increase the irrigation efficiency.					
6	Two-turn irrigation rotation must be used when cotton is cultivated.					
7	Sharaki is not suitable for two-turn irrigation rotation.					
8	Two partial regulators are required for two-turn irrigation rotation.					
9	Sprinkler irrigation system is sensitive for clogging.					
10	Drip irrigation system needs high operating pressure.					
(B)						

1. State and draw the forms of water in the soil?

- 2. *In the figure:* is it a canal or a drain? (2 Marks) 3. What is the minimum value for Y? (2 Marks)
- 4. What is the required value for Y1?

Question (2) (5*4 = 20 Marks)

A branch canal has a length of 15 km, serves an area of 16,200 Feddan, and feeds 3 distributary canals. The land is cultivated as 40% cotton and 55% Sharaki. *The data are in the following table:*

(2 Marks)

	Location	Area	Land Levels for Distributary Canals				
Distributary	(L: Left)	Served	at Km:				
Canal		(Feddan)	0.0	1.0	2.0	3.0	4.0
C 1	2.0, L	5000	(12.00)	(11.95)	(11.90)/(10.90)	(10.80)	(10.70)
C 2	6.0, L	5000	(11.60)	(11.55)	(11.50)	(11.45)	
C 3	10.0, L	3700	(11.40)	(11.20)	(11.00)	(10.80)	

1. For a suitable irrigation rotation, sketch a plan for the branch canal and its distributary canals showing the required constructions?

- 2. Draw the synoptic diagram for the distributary canal C1 for lift irrigation?
- 3. Fix the water level in the branch drain at the point receiving water from C1?
- 4. Calculate the area served for design at different sections of the branch canal, (compensation ratio = 30%)?
- 5. Determine the discharge at km 12.0 of the branch canal (F.W.D. = $50 \text{ m}^3/\text{Fed/day}$)?

(15 Marks)

Question (3) (5*4 = 20 Marks)

- 1. Design the cross section at km 7.0 of a branch drain at Upper Egypt, (A.S. = 20,000 Feddan, F.W.D. = 50 m³/Fed/day, i = 20 cm/km, Z=1.5 & b = 2y)?
- 2. Find the velocity at km 7.0 of the branch drain?
- 3. Comment on this value of the velocity?
- 4. Draw a typical cross section of the branch drain at km 7.0 (W.L. = (10.30) & L.L. = (12.00))?

(4*2 = 8 Marks)

(7 Marks)

5. Determine the quantities of cut and fill at km 7.0 for the branch drain?

Question (4) (35 Marks)

(A) *State the suitable structures for the following cases:*

- 1. Figure 1?
- 2. Figure 2?
- 3. Intersection of a branch canal and a main drain?
- 4. Intersection of a branch drain and a main canal?

(B) For the canal and the road shown in the figures, the water slope is 8 cm/km, the roughness coefficient is 0.025 and the road width over the bridge is 9 m with 2 footpaths, each of 1.5 m.

- 1. Design R.C. bridge, where heading up is not to exceed 5 cm?(10 Marks)
- 2. Design R.C. Box culvert, where heading up is not to exceed 10 cm? (10 Marks)
- 3. Draw a sectional elevation for the R.C. Box culvert?

Examiners Board: Dr. Alaa El-Hazek